POST FISTULA URINARY INCONTINENCE

Professor Judith Goh AO
Urogynaecologist
Griffith University
Greenslopes Private Hospital
QEII Hospital
Brisbane, Australia
Gold Coast Hospital
URINARY INCONTINENCE

• Involuntary loss of urine experienced during the bladder storage phase
 o ICS
URINARY INCONTINENCE EXCLUDING FISTULA

• Overactive bladder
• Stress urinary incontinence
• Mixed urinary incontinence
• Overflow incontinence
• Others e.g. cognitive dysfunction
LOWER URINARY TRACT SYMPTOMS – ICS DEFINITIONS

• Overactive bladder (OAB)
 o Urinary urgency, usually accompanied by increased daytime frequency and/or nocturia, with urinary incontinence (OAB-wet) or without (OAB-dry), in the absence of urinary tract infection or other detectable diseases

• Stress urinary incontinence (SUI)
 o Complaint of involuntary loss of urine on effort or physical exertion including sporting activities, or on sneezing or coughing

• Mixed urinary incontinence (MUI)
 o Complaints of both stress and urgency urinary incontinence
URINARY INCONTINENCE

• Systematic reviews – wide range of incontinence rates
 o World-wide UUI – up to 1/3 women (Milsom 2014)
 o MUI 1/3 women (Manssian 2003)
 o Sub-saharan Africa (Whiting, Pope et al 2022)
 • Wide variation e.g. 0.6% in Sierra Leone to 42.1% in Tanzania
 • Uganda SUI and UUI 27%
URODYNAMICS INVESTIGATION

• Measurement of all the physiological parameters relevant to the function and any dysfunction of the lower urinary tract
 o Uroflowmetry, post-void residual
 o Cystometry
 o Urethral closure mechanism
URODYNAMICS – ICS DEFINITIONS

• Uroflowmetry
 o Assesses voided volumes, urine flow rate, post-void residual urine
 o Strong dependency of flow rates on voided volume
 o Cultural challenges with equipment

• Cystometry
 o Measurement of the pressure-volume relationship of bladder during filling
 o Assess bladder sensation, bladder capacity, detrusor activity/compliance, urinary leakage
 o Cytometrogram – graphical recording of the bladder pressure(s) and volume(s) over time
 • Detrusor pressure (P_{det}): Subtracting abdominal from intravesical pressure
 ▪ $P_{\text{det}} = P_{\text{ves}} - P_{\text{abd}}$

• Urethral closure mechanism
 o Incompetent: leakage of urine occurs during activities which might raise intra-abdominal pressure in absence of a detrusor contraction
POST-FISTULA URINARY INCONTINENCE

• McConnachie 1958
 o “operative cure is claimed only when cure of the fistula with complete control of urinary function has been achieved”

• Goh 2020
 o “more than a hole in the bladder”
URINARY INCONTINENCE AFTER CLOSURE OF URINARY PFF

• 960 successful fistula (obstetric) closure (Goh J, Browning A et al. Int Urogynecol J 2008)
 o 24% ongoing urinary incontinence at time of discharge from hospital
 o Highest risk – lower fistula i.e. close to external urethral meatus
 ▪ Goh classification Type 1 = 3.2% risk incontinence vs Type 4 = 47.2%
 o Goh classification Type ii & iii (vaginal scarring, circumferential fistula) – increase risk
 o Goh classification a-c (size) – tendency to increasing incontinence with increasing fistula size
 (p=0.08)
 (Goh J. ANZJOG 2004)
URODYNAMICS FOLLOWING OBSTETRIC FISTULA REPAIR

• Urodynamics 149 women with incontinence after obstetric fistula repair (mean 51 months)
 o 73 (49%) had urodynamic stress incontinence only
 o 5 (3%) had detrusor overactivity only
 o 64 (43%) had both urodynamic stress incontinence and detrusor overactivity.
 o 7 (5%) of women had neither detrusor overactivity nor urodynamic stress incontinence.
 o 11 (7%) had post-void residual volumes 150 mls or more.
 o Significant urethral sphincter dysfunction
 ▪ 1/3 required paraurethral compression to stop leakage during filling without detrusor rise

(Goh J, Krause H et al. IUJ 2013)
INVESTIGATION OF POST FISTULA URINARY INCONTINENCE

• History
• Examination
 o Exclude fistula recurrence
• Bladder diary
• Residual urine
• Urodynamics if available
 o “simple cystometry”
 • Insert urethral catheter, inflate balloon
 • Connect syringe to catheter and hold vertically about 15 cm above pubic symphysis
 • Fill bladder to about 300 mls
 • Document filling sensations
 • Remove plunger from catheter tip syringe
 • Lower catheter/syringe to note height at which meniscus is seen (vesical pressure)

MANAGEMENT POST LOWER URINARY TRACT FISTULA
URINARY INCONTINENCE

• Conservative management
 o Pelvic floor rehabilitation
 o Lifestyle changes
 o Bladder training
 o Pharmacological agents
 o Urethral plugs (Goh J, Browning A. ANZJOG 2005)

• Surgery
 • “incompetent drain-pipe urethra”
 • Fascial slings
 o +/- retropubic urethrolysis/omental fat-flap (Carey M, Goh J et al. AJOG 2002)
 • Bulking agents (Krause H, Lussy J, Goh J. JOGR 2014)
URINARY STRESS INCONTINENCE PROCEDURES

Ideal pre-operative situation

- Full history
- Initial conservative management
 - Exclude pathology, infection etc
 - Bladder diary
 - Pelvic floor rehabilitation
 - Lifestyle changes – fluids, diet, bowel, weight
- Compliance
- Confirm diagnosis
- Discussion regarding surgical options, risks
- Realistic expectations for outcomes for procedures
IDEAL PATIENT FOR SUI SURGERY

• Ideal patient
 o Urodynamic stress incontinence only
 o Normal uroflowmetry
 o Normal bladder capacity
 o No overactive bladder
 o No previous continence procedures/urethral or bladder neck surgeries
 o Normal BMI
 o No significant medical co-morbidities
 o Complete childbearing
MANAGEMENT INCONTINENCE: “MUSCULAR STRAPS”

- McConnachie 1958
 - “Operative treatment of persisting urinary stress incontinence... formation of a cross-strut muscular sling using the bulbo-cavernosus muscle, levator ani muscle...”

- Browning 2004
 - Similar procedure but performed during fistula closure
MANAGEMENT POST LOWER URINARY TRACT FISTULA
URINARY INCONTINENCE: SLINGS

• Acheter-Walsh 2010 (Nigeria)
 o 140 women; 2 months follow up <40% dry
 o Native tissue sling – “substantial urethrolysis and retropubic dissection”
 o Polypropylene mesh – 20% vaginal extrusion rate
 o Iatrogenic fistula 17.3%

• Carey, Goh (2002)
 o 9 cases all had UDIs pre-op confirming significant USI
 o Urethrolysis, omental flap, rectus fascial sling
 • 2 cystourethrotomy
 o 14/12 – 67% subjective/objective (UDs) – no SUI
 • 7 women returned for follow up; 1 failure
BULKING AGENTS FOR SUI

• Treat SUI via
 o Coaptation of urethra

• 2 techniques for urethral bulking
 o Transurethral or periurethral

• 2 classes of bulking agents
 o Particulate
 ▪ Solid microparticles in liquid (that is absorbed)
 ▪ Long-term bulking effect via foreign-body/fibrosis reaction forming a capsule/cushion
 ▪ Complications: foreign body granulomas, migration to other body sites, local extrusion/erosion
 o Non particulate
 ▪ Homogenous gel, is not absorbed
 ▪ Host tissue grows into gel which anchors bulking agent in situ
BULKING AGENTS FOR SUI

• 7-year follow up (Brosche 2017)
 o 388 women – 67.1% cured/improved if primary surgery for SUI; 61.5% if not primary
 o Complications – transient voiding dysfunction 15.3%; UTI 3.5%

• TVT vs Bulkamid – randomized trial (Freitas 2020)
 o Primary surgery: 224 women, 1-year follow up
 o Negative cough test: 95% TVT; 66.4% Bulkamid
 o Periop complications: TVT 17.1%; Bulkamid 2.6%
 ▪ Reoperation: TVT 5.4%; Bulkamid 0%

• Bulkamid after radiation therapy for gynaecological cancers (Krhut et al 2016)
 o Significant scarring and poor quality tissue
 o After radioRx – synthetic slings – higher risk of complications – mesh erosion into urethra/vagina
 o 24 women, 12 months follow up
 o No significant complications; 25% completely dry
BULKAMID POST FISTULA

• Usual technique via 0 degree cystoscope
 o Transurethral, bulking agent placed at bladder neck or mid-urethra
• Modified technique as cystoscope not readily available
 • Recurrent fistula excluded, simple urodynamics performed

• Periurethral technique
 o Measure urethral length and bladder neck via Foley catheter
 o Insert metal catheter into urethra
 ▪ To determine direction and path of urethra
 ▪ 23G Bulkamid needle inserted into periurethral region at 3 points – each point bulking agent inserted to a total of 1ml
POST FISTULA URETHRAL BULKING AGENT: PROCEDURE

- History, examination
- Simple urodynamics
- Procedure
 - Under sedation/GA
 - Measure length to estimate urethrovessical junction via Foley catheter
 - Path and direction of urethra determined by metal catheter
 - Bulkamid total of 1ml injected via 23G long needle through periurethral skin at 3, 6 and 9 o’clock
 - Leave metal catheter in situ – if needle in urethra, then able to identify it as needle strikes the metal catheter
 - Empty bladder
- "urethral lengthening" procedure in past
 - Not a ‘problem’ with bulking as performed at bladder neck not ‘mid-urethra’ (sling)
BULKAMID POST FISTULA

- Krause, Goh 2014
 - DR Congo
 - Modified technique as no cystoscope
 - 4 cases, pre-op examination, simple urodynamics confirms diagnosis, no overactive bladder
 - Between 3-11 previous VVF surgeries
 - At 10-14 days: 3 dry, 1 mild SUI (11 previous repairs)
 - 1 woman – voiding dysfunction D1, then successful TOV
- 20 cases in total
 - 1 failure
 - 1 repeat injection – dry
 - 1 require ongoing oxybutynin – dry
 - 2 transient retention
 - 1 UTI

What is Bulkamid?

Bulkamid is a urethral bulking agent, consisting of 97.5% water and 2.5% polyacrylamide. Bulkamid is injected into the soft tissue of your urethra. Bulkamid achieves its bulking effect by the volume of the gel injected.
BULKAMID POST FISTULA

• Why are the women happy with results?
 o Patient selection and counselling
 ▪ “Ideal patient”
 ▪ SUI surgery does not treat and may worsen OAB
 ▪ SUI surgery – higher failure with mixed urinary incontinence
 ▪ Incontinence very severe pre-op, post-op satisfied with improvement

• Advantages
 o Minimally invasive
 o Can be done in women with severe scarring or had “urethral lengthening”
 ▪ Bulking agent at bladder neck, not mid-urethra

• Disadvantage
 o Cost of bulking agent
 o May not be readily available
• Urinary incontinence after fistula repair
 o History – full urinary symptoms
 o Examination – exclude fistula etc.
 o Bladder diary
 o Urodynamics/simple cystometry
 ▪ Beware voiding dysfunction – surgery may worsen
 ▪ Mixed urinary incontinence – surgery may worsen OAB, and success may be lowered with MUI
 o Patient selection is vital
 o Bulking with nonparticulate agent
 o Good short-term outcomes
 o Require longer term outcomes